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Al~tract---On the basis of results of simple box-counting analysis, it has been suggested in several recent 
publications that natural fracture patterns are fractal. Fractal patterns are characterized by self-similarity of 
structure on a range of scales and provide straight-line distributions on box-counting plots. New analysis of a 
fracture pattern that provided the most convincing straight-line box-counting curve previously published, shows 
that the curve is non-linear and, therefore, that the fracture pattern is not fractal. Non-linear box-counting curves 
are also characteristic of other natural fracture patterns analysed but spurious linear curves can be obtained if the 
area analysed extends beyond the mapped area. 

INTRODUCTION 

TrlE cor~cErr that fault patterns show a degree of self- 
similarity over a wide range of scales has long been 
familiar to geologists (Tchalenko 1970). Self-similarity 
of structure is a characteristic of fractal geometries, in 
which any portion of the system is a scaled-down version 
of the whole (Mandelbrot 1983). A feature of a fractal 
geometry is that the relative numbers of large and small 
elements remain the same at all scales between the 
upper and lower fractal limits; the scaling relationship is 
described by the fractal dimension, which is simply 
derived from the power-law exponent on a plot of log 
size vs log cumulative number. 

Recent work has shown that some elements of fault 
systems have fractal properties. For example, the popu- 
lations of fault displacements (Kakimi 1980, Childs et al. 
1990, Marrett & Allmendinger 1991, Walsh et al. 1991), 
fault trace lengths (Heifer & Bevan 1990, Yielding et al. 
1992) and fault zone breccia clast sizes (Sammis et al. 
1987) all provide power-law distributions. The mor- 
phologies of individual fault traces and of segmented 
faults also show fractal characteristics (Aviles etal. 1987, 
Power & Tullis 1991). The further claim has been made 
by some authors (Barton & Larsen 1985, Barton & 
Hsieh 1989, Hirata 1989) that fracture trace patterns, of 
fault and of joint arrays, also are fractal but others using 
the same technique claim that fracture trace patterns are 
not fractal (Odling 1992, Gillespie et al. in press). The 
purpose of this note is to reconcile these contradictory 
views by reference to results obtained by new analysis of 
a fracture trace map originally produced by Barton & 
Hsieh (1989) and interpreted by them as fractal. 

ANALYSIS OF THE SPATIAL DISTRIBUTIONS 
OF FRACTURES 

The conventional method of fractal analysis of frac- 
ture patterns is the box-counting technique (Barton & 
Larsen 1985), which is designed to measure the fractal 
dimension (or box dimension) of a fractal on a plane 
(Mandelbrot 1983, Falconer 1990). Square grids con- 
taining boxes of a given side length (d) are superimposed 
on a fracture pattern and the number of boxes (Nd) 
containing fractures is counted. This process is repeated 
for boxes of different sizes and the curve log d vs log N d is 
plotted. Box-counting curves characteristically have 
limiting slopes of -2.0,  for box sizes at which all boxes 
contain one or more fractures, and -1 .0  for box sizes at 
which no box contains more than one fracture. Between 
these limiting slopes, the central segment of the box- 
counting curve is, for a fractal pattern, a straight line 
with slope - D  such that: 

Naoc d - ° ,  

where D is the fractal dimension of the pattern, with a 
value between 1.0 and 2.0. This central segment is the 
only part of the curve which is relevant to characteriz- 
ation of the pattern, as was pointed out by Barton & 
Hsieh (1989). For a non-fractal pattern the central 
segment is curved with the slope varying between -1 .0  
and -2.0. The method has obvious limitations with 
regard to characterization of fracture systems, e.g. the 
sizes of individual fractures are not taken into account. 
The method is most suited to arrays of intersecting 
fractures which fragment the rock surface into approxi- 
mately equidimensional fragments, because the results 
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characterize the size distribution of the fragments rather 
than the fracture systematics. 

There are differences in the methodologies employed 
by the various investigators who have applied the box- 
counting technique to fracture patterns. One difference 
concerns the objective identification of straight-line 
curves. It has been argued (Gillespie et al. in press) that 
regular curves have been mis-identified as straight lines, 
leading to the mistaken conclusion that the analysed 
patterns are fractal (e.g. Barton et al. 1988, Hirata 
1989). This problem can be avoided by examining plots 
of box size vs curve slope over the whole range of box 
sizes, as shown below. Systematic changes in slope are 
easily identified in this way and most of the published 
box-counting curves which have been derived from 
fracture patterns have been concluded to be non-linear 
and the fracture patterns non-fractal (Gillespie et al. in 
press). However, notable exceptions are the box- 
counting curves (Barton & Hsieh 1989, fig. 9) derived 
from fracture maps of exposed pavements at Yucca 
Mountain, Nevada. Earlier curves derived from these 
fracture maps (Barton et al. 1988) are less straight. One 
of these maps (Pavement 1000 of Barton & Hsieh 1989, 
fig. 18, reproduced here as Fig. 1) and the box-counting 
curve derived from it (Barton & Hsieh 1989, fig. 9, 
reproduced here in Fig. 2) have been given wider cur- 
rency as an example of a fractal fracture pattern (Tur- 
cotte 1992, figs. 4.4 and 4.5). The box-counting curve 
(Fig. 2) has a straight-line distribution over ca 2 orders of 
magnitude of box size, with a best-fit slope of ca -1.78. 

Fig. 1. Fracture map of exposed Pavement  1000 in densely welded 
Miocene tufts, Yucca Mountain,  Nevada,  from Bar ton & Hsieh (1989, 

fig. 18). 
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Fig. 2. Box-counting curves for fracture map in Fig. 1. Data points 
from Barton & Hsieh (1989) are shown as open triangles and were 
digitized from their fig. 9. The second curve (filled squares and solid 
line) is derived from an invalid box-counting run with a single initial 

box circumscribing the fracture map (see also Figs. 3 and 4). 
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Fig. 3. The initial grid (fine lines) for a typical box-counting run on the 
fracture map shown in Fig. 1. The boundary of the mapped area is 
shown by the broken line. Also shown is the single circumscribing box 
(heavy line) used as the single initial box for the invalid box-counting 

run giving rise to a power-law curve (see Fig. 2). 

We have carried out our own box-counting analysis of 
the map and attempted to reproduce the straight-line 
curve. The map analysed was digitized from Barton & 
Hsieh (1989, fig. 18) using a standard industry mapping 
package. Since the outline of the mapped fracture pat- 
tern is irregular it is not possible to include the entire 
map in a box-counting analysis. The initial box size, the 
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Fig. 4. (a) Box-counting results for the fracture map shown in Fig. 1 
using: (i) the multi-box initial grid shown in Fig. 3 (crosses); and (ii) the 
single circumscribing initial box shown in Fig. 3 (filled squares). 
Regression analysis of the curves (incorporating all of the data points 
shown) provides the following 'fractal dimensions'  (D) and correlation 
coefficients (r): D = 1.67 and r = 0.994 for curve (i) and D = 1.77 and r 
= 0.999 for curve (ii). (b) Box size vs slope plots for each of the curves 
in (a). Slope values are those calculated between successive pairs of 

adjacent data points. 

position of the origin and the orientation of the box- 
counting grid relative to the fracture map determine 
what proportion and which parts of the map are analysed 
by a particular box-counting run (see Fig. 3). A box- 
counting curve for one starting array of boxes is shown in 
Fig. 4(a); curves generated using a range of initial box 
arrays have similar slopes and curvatures but vary in 
position. Even though regression lines for these curves 
have high correlation coefficients (0.994 for curve i 
shown in Fig. 4a) they are, nevertheless, not straight but 
are systematically curved and without a power-law cen- 
tral segment. Our analysis of the Pavement 100 fracture 
map of Barton & Hsieh (1989) gives similar results. High 
correlation coefficients are mainly due to the ranking of 
box numbers which limits the scatter about any curve 
and regression analysis is not therefore well suited to 
discriminating between straight and curved box- 
counting curves. 

The curvature is illustrated by a plot of the slopes 

between adjacent data points on an individual box- 
counting curve (Fig. 4b). The gradual change in slope 
from -2 .0  to -1 .0  is characteristic of all curves gener- 
ated by this technique for this fracture pattern. A slope 
of -2 .0  occurs at box sizes greater than the maximum 
unfractured block, or fragment, size and a slope 
approaching - 1.0 at the minimum box size analysed. At 
large box sizes the slope is measuring the degree of 
plane-filling of the fracture pattern and at small box sizes 
the slope is, in the limit, measuring the roughness of 
individual fractures. The different positions of other 
box-counting curves for this fracture pattern are largely 
a function of the differences in total fracture trace length 
within the areas covered by the initial box array in each 
box-counting run. Only with rectilinear and orthogonal 
map boundaries is it possible to include the whole map 
within the initial array of boxes without including 
unmapped ground. 

However, if a box-counting curve is constructed for 
this map using a single initial box which circumscribes 
the fracture map, the resulting box-counting curve is 
straight over much of its length (from 20 m to <40 cm for 
curve ii of Figs. 2 and 4), with a slope of ca - 1.8 (Fig. 4b) 
and is approximately coincident with that derived by 
Barton & Hsieh (1989); at similar scale ranges the box- 
counting curve for the multi-box initial grid has a slope 
of ca -2.0.  Note that projections of both curves intersect 
the abscissa at a box size of ca 20 m, which is the size of a 
circumscribing box. The abrupt offset of our curve at 
large box sizes (ca 4 m) is due to the effects of the long 
straight left-hand boundary of the map being parallel to 
the box-counting grid. Our relatively straight box- 
counting curve has little geological significance since it 
incorporates the scaling properties both of the 
unmapped ground, external to the map but within the 
single initial box, and of the mapped fracture pattern; we 
believe the same to be true of the previously published 
curve. More importantly, because the straight line distri- 
bution extends to box sizes which are significantly 
greater than the maximum fragment size in the fracture 
pattern, which is ca 1 m 2, the previously published curve 
can have only a tenuous relationship with the scaling 
properties of the fracture pattern. A box-counting curve 
should extend to box sizes comparable with the sizes of 
the smallest fragments in the pattern because it is in this 
range that the curvature is most marked (see Fig. 4). The 
box-size range relevant to the fracture pattern is indi- 
cated in Fig. 4(a). The previously published straight-line 
curve is therefore not a valid representation of the 
analysed fracture pattern. As the curves derived using a 
valid methodology clearly are non-linear it is concluded 
that the fracture pattern is not fractal. 

DISCUSSION AND CONCLUSIONS 

Box-counting analysis of a fracture pattern previously 
reported to be fractal provides a non-power-law distri- 
bution indicating a non-fractal geometry. Gillespie et  al. 

(in press) have shown that other fracture maps also do 
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not provide power-law box counting curves. A fracture 
pattern incorporates many different attributes such as 
orientation distribution, size population and fracture 
trace geometry. It is therefore unlikely that natural 
fracture patterns could, for all but the simplest of cases, 
be characterized by a single fractal dimension over a 
significant scale range. 

The example illustrated highlights the importance of 
applying a strict methodology to box-counting analysis. 
Unmapped ground outwith the fracture map must not be 
included in the area analysed; the fact that a box- 
counting run need not start with a single initial box 
makes this condition less restrictive than would other- 
wise be the case. The exclusion of unmapped ground will 
usually require that some parts of the fracture pattern, 
particularly those close to the map boundary, be omitted 
from a box-counting run. Several runs should be made to 
test the sensitivity of the results to exclusion of different 
parts of the map. There is a trade-off between maximiz- 
ing the area analysed and maximizing the size of the 
initial boxes. The box-counting should be performed 
over as wide a range of box sizes as is possible but the 
relevant part of the curve is that corresponding to box 
sizes between those of the largest and smallest fragments 
or fracture spacings. Beyond these limits the slope of the 
curve tends to -2 .0  and -1 .0 .  Analysis over the widest 
possible range of box sizes, i.e. beyond the valid range, 
is recommended in order to track these slope changes 
more precisely and to define the valid range objectively. 
Linear regression should be carried out only on those 
parts of the curve within the valid range. Regression 
lines with high correlation coefficients are not, however, 
diagnostic of power-law curves which are best identified 
with plots of box size vs slope. 
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